\(\int \sec ^2(e+f x) (a+b \sec ^2(e+f x))^p \, dx\) [306]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 72 \[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx=\frac {\operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b \tan ^2(e+f x)}{a+b}\right ) \tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a+b}\right )^{-p}}{f} \]

[Out]

hypergeom([1/2, -p],[3/2],-b*tan(f*x+e)^2/(a+b))*tan(f*x+e)*(a+b+b*tan(f*x+e)^2)^p/f/((1+b*tan(f*x+e)^2/(a+b))
^p)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4231, 252, 251} \[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx=\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^p \left (\frac {b \tan ^2(e+f x)}{a+b}+1\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b \tan ^2(e+f x)}{a+b}\right )}{f} \]

[In]

Int[Sec[e + f*x]^2*(a + b*Sec[e + f*x]^2)^p,x]

[Out]

(Hypergeometric2F1[1/2, -p, 3/2, -((b*Tan[e + f*x]^2)/(a + b))]*Tan[e + f*x]*(a + b + b*Tan[e + f*x]^2)^p)/(f*
(1 + (b*Tan[e + f*x]^2)/(a + b))^p)

Rule 251

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, (-b)*(x^n/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rule 252

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^Fra
cPart[p]), Int[(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILt
Q[Simplify[1/n + p], 0] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 4231

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \left (a+b+b x^2\right )^p \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {\left (\left (a+b+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a+b}\right )^{-p}\right ) \text {Subst}\left (\int \left (1+\frac {b x^2}{a+b}\right )^p \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {\operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b \tan ^2(e+f x)}{a+b}\right ) \tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a+b}\right )^{-p}}{f} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.04 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.99 \[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx=\frac {\operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b \tan ^2(e+f x)}{a+b}\right ) \left (a+b \sec ^2(e+f x)\right )^p \tan (e+f x) \left (1+\frac {b \tan ^2(e+f x)}{a+b}\right )^{-p}}{f} \]

[In]

Integrate[Sec[e + f*x]^2*(a + b*Sec[e + f*x]^2)^p,x]

[Out]

(Hypergeometric2F1[1/2, -p, 3/2, -((b*Tan[e + f*x]^2)/(a + b))]*(a + b*Sec[e + f*x]^2)^p*Tan[e + f*x])/(f*(1 +
 (b*Tan[e + f*x]^2)/(a + b))^p)

Maple [F]

\[\int \sec \left (f x +e \right )^{2} \left (a +b \sec \left (f x +e \right )^{2}\right )^{p}d x\]

[In]

int(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x)

[Out]

int(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x)

Fricas [F]

\[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \sec \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x, algorithm="fricas")

[Out]

integral((b*sec(f*x + e)^2 + a)^p*sec(f*x + e)^2, x)

Sympy [F]

\[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx=\int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{p} \sec ^{2}{\left (e + f x \right )}\, dx \]

[In]

integrate(sec(f*x+e)**2*(a+b*sec(f*x+e)**2)**p,x)

[Out]

Integral((a + b*sec(e + f*x)**2)**p*sec(e + f*x)**2, x)

Maxima [F]

\[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \sec \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^p*sec(f*x + e)^2, x)

Giac [F]

\[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \sec \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^p,x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^p*sec(f*x + e)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx=\int \frac {{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^p}{{\cos \left (e+f\,x\right )}^2} \,d x \]

[In]

int((a + b/cos(e + f*x)^2)^p/cos(e + f*x)^2,x)

[Out]

int((a + b/cos(e + f*x)^2)^p/cos(e + f*x)^2, x)